
Common sense validation and reasoning using
Natural Language Processing

Shrenik Doshi, Praveen Joshi, and Haithem Afli

ADAPT Centre,
Cork Institute of Technology, Cork, Ireland

Abstract. Natural Language Processing is an emerging field of Artifi-
cial Intelligence. Various real-world problems are now solved using the
advancements of NLP. This paper is focused on how NLP can be used to
validate whether a sentence is making any sense or not. Also, generating
reasons for the sentence which does not make sense can be addressed.
The validation of sentence is being done using the n-gram language mod-
els. On the other hand, the problem of generating a sentence is solved
using the pre-trained models.

Keywords: Common sense reasoning(CSR) · Common sense validation
· Natural Language Processing (NLP) · Natural Language Understanding
(NLU) · Natural Language Generation (NLG) · Neural Networks (NN)

1 Introduction

Natural language understanding (NLU) and Natural Language Generation (NLG)
are evolving rapidly. Computers are becoming more and more intelligent. Nowa-
days, computers can understand a language and generate another sentence using
reference sentences. One of the applications of NLU is common sense validation.
On the other hand, NLG helps generate reasons commonly termed as common
sense reasoning (CSR). For developing an intelligent system, a system must have
some common sense which can differentiate between sentences making any sense
or not. There has been much work done in the field of CSR. Commonsense rea-
soning is a very complex problem that is not possible to solve using any single
technique of Artificial Intelligence. So to develop a common sense understanding
capable system, one needs to incorporate multiple AI techniques. Commonsense
reasoning is expected to be solved easily by kids but it is difficult for computers
to do appropriate reasoning. The human capacity to comprehend language is
general, adaptable, and powerful. Conversely, most NLU models over the word
level are intended for a particular assignment and battle with out-of-area data.

2 Related Work

As the field of Natural Language Reasoning has evolved over the years, there
has been remarkable work done before. In the year 2002, a paper was written



2 Shrenik et al.

[8] which stated how NLU can help in story understanding and answering ques-
tions about such stories. This paper focused on understanding texts written by
progressively harder children. The RTE challenges [1] started in the year 2005.
These tasks were mainly for recognizing from two given text fragments whether
the meaning of one text can be inferred from the other text. It captures ma-
jor inferences about the variability of semantic expression which are commonly
needed across multiple applications [1].
The problem with RTE challenges of the year 2005 are that there are no “nat-
ural” distributions of Text-Hypothesis examples. For example, T-H pairs may
be collected directly from the data processed by actual systems, considering
their inputs and candidate outputs[1]. The latest RTE challenge was in the year
2011 which is known as Seventh Pascal RTE. There is another similar challenge
which is known as Winograd Schema Challenge (WSC) which was held in 2011.
Here the system is presented with questions about sentences known as winograd
schemas. To answer a question, a system must disambiguate a pronoun whose
coreferent may be one of two entities, and can be changed by replacing a single
word in the sentence[14]. CoPA (Choice of Plausible Alternatives) is another
such system which uses a forced choice format. Each question in CoPA gives
a premise and two plausible clauses or effects, where the correct choice is the
alternative that is more plausible than the other.[11]
In recent years, the field of Natural Language Processing (NLP) has evolved
very rapidly. With the field of NLP growing fast, this field is further divided
into many subdomains. Some of these subdomains are Natural Language Un-
derstanding (NLU) and Natural Language Generation (NLG). Computers are
becoming more and more intelligent. One of the applications of NLU is common
sense reasoning (CSR). For developing a smart system, a system must have some
common sense which can differentiate between sentences, which makes sense or
does not make sense. There has been much work done in the field of CSR. Com-
monsense reasoning is too hard a problem to solve using any single artificial
intelligence technique [8].
On the other hand, NLG is also a very vast field of research and application.
One of the applications of NLG is common sense reasoning. This application of
NLG is related to the generation of sentences naturally by the machine. The
research done in this paper is a combination of NLU and NLG. Common-sense
validation and reasoning is too hard a problem to solve using any single ar-
tificial intelligence technique[8]. So to develop a common sense understanding
capable system, one needs to incorporate multiple AI techniques. Commonsense
reasoning-the sort of reasoning we would expect a child to do easily-is difficult
for computers to do[8]. The human capacity to comprehend language is general,
adaptable, and powerful. Conversely, most NLU models over the word level are
intended for a particular assignment and battle with out-of-area data.



Common sense validation and reasoning using Natural Language Processing 3

3 Material

3.1 Dataset and Acquisition

Common sense validation and reasoning both uses different datasets. The dataset
specified in this paper is used[13]. The dataset is manually labelled by 7 anno-
tators. Human performance on the benchmark is 99.1% for the common sense
validation dataset and 97.3% for the common sense reasoning dataset[13].

For common sense validation, the dataset consists of two similar sentences
which are in the same syntactic structure and differ by only a few words. Only one
of them makes sense while the other does not.[13]. Below are some statistics of
training and test dataset for common sense validation part: For common sense

Commonsense Sentences Against Commonsense Sentences

Training Data 10,000 10,000
Trial Data 2021 2021
Test Data 1000 1000
Dev Data 997 997

Table 1: Common sense validation dataset statistics

reasoning, the dataset consists of three reference sentences for each ”against
common sense” sentence. Using these reference sentences, a new sentence needs
to be generated.

Reference Sentences

Training Data 30,000
Trial Data 6063
Test Data NA

Table 2: Common sense reasoning dataset statistics

Other than this, an external corpus has also been used to train the language
model. This is a collection of the proceedings of the European Parliament, dating
back to 1996[5].

Below is the brief discussion on these datasets

1. Validation Task dataset[13]: The dataset is in simple CSV format. This
dataset contains 2 data files for all the trains and trials. There is only 1
file for the test data. Train and trial data has 3 columns. The first file, con-
sists of 3 columns. The first column is the sentence id, and the next two
columns contain sentences. One of the sentences is making sense, and oth-
ers do not make sense. The other file is used for classification. There are 2
columns in this CSV file. The first column is the sentence id, and the 2nd



4 Shrenik et al.

column is column id for each sentence in the file, which does not make sense.
The test data simply has only one file with 3 columns. 1st column is the
sentence id, and the other 2 columns are sentences. One of them making
sense, while others do not make any sense.

2. Reasoning Task dataset[13]: In this dataset, there are 2 different CSV files.
The first CSV file has 2 columns. First column in this file is the sentence id,
and the other column is the sentence, which does not make any sense. The
second data file has 3 reference sentences for each sentence in the first data
file. These reference sentences are the reasons that state why the sentence
in the first file does not make any sense.

3. Europarl dataset [5]: This is a massive corpus of data. This corpus is ex-
tracted from parliament sessions in the European Parliament. It includes
data of 21 different languages, but we will only use the one which English.
This dataset consists of document files, and these files are read and passed
through the pre-processing layer to get the actual trained model.

4 Methodology

In this section, the detailed architecture will be discussed. This chapter includes
all the implementation details, brief description about different parts of system
like sentence validation block and reasoning block, and also some important code
snippets. A brief description of each main functionality of the system is discussed
in detail.

4.1 Architecture

Figure 1 shows detailed information about each block and the different func-
tionalities used in each block. As discussed earlier each block is dedicated to
a specific functionality. These blocks, for the purpose of this system, are di-
vided into phases. The input to each phase is the output of it’s previous phase.
Following are different phases the system is divided into:

Pre-processing Block This block is responsible for removing the unwanted
and useless things from the corpus. The dataset consists of many sentences, and
it is a huge dataset. The data have to be brought into some standardized form.
The pre-processing step is further divided into 2 phases:

Removing noise: There is a large number of stop-words (like, and, the, a, in, an,
etc.). The occurrences of these words are very high. Due to these words, the ac-
curacy of the language may decrease. The language model works on the concept
of probability. It predicts the next possible word by looking at the probability.
Other than stop-words, there is even punctuation. These punctuation needs to
be removed; otherwise, they may also hamper the accuracy of the model. Last
but not least, the word’s case. The language is case sensitive.



Common sense validation and reasoning using Natural Language Processing 5

Fig. 1: Detailed Architecture

For example, the words ”Mango”, ”mango”, and ”mAngO” have the same mean-
ing, but if kept like this, they will be treated as different words. This scenario
may also affect the accuracy of the model. Now all the words are lowercased. The
sentences may also URLs, and these URLs are not important for this system.
So we will remove them too.

Text normalization: In this phase of pre-processing, the sentence is first divided
into tokens. As the system creates language models, the data fed to these models
are in the form of tokens. It is easy to create a language model around tokens.
These tokens are nothing but words. Once the sentence is tokenized, the next
step is lemmatizing each token. Lemmatization is a process of convert a word
into its base word. For example, the words run, running, runs, ran, etc. means



6 Shrenik et al.

the same. Just the tense of each word is different. When we lemmatize these
words, they convert to the base words, which is ’run’.

Sentence Validation Block

This block is responsible for predicting whether the sentence is making sense
or not. This block focuses on the n-gram language models:

n-gram language models:

One is a traditional n-gram language model. Ngram is a type of Markovian
model. The model is based on counting the occurrences of words in the corpus.
Once the frequency of words is found, the probability for that word given some
condition can be calculated. While this method of estimating probabilities di-
rectly from counts works fine in many cases, it turns out that even the web isn’t
big enough to give us good estimates in most cases[7]. This is because language
is creative; new sentences are created all the time, and we won’t always be able
to count entire sentences[7]. For the purpose and requirement of this project,
3-grams and 4-grams models are built. These n-gram models are trained on an
external corpus of Europarl data[5].

BERT:

Second is the more advanced pre-trained model called ”BERT”. BERT pro-
vides the pre-trained vectors representation of the words, which can be used
further with the various AI models[4]. BERT architecture is a frame to provide
representations by joint conditional probabilities both from the left and right
context for all the processing layers[2]. BERT vectors are used in the experiment
to utilize the shallow transfer learning models to enhance the current predictive
models. BERT is used as a service to convert processed text to its corresponding
vector[4]. Amongst all the models of BERT- BaseUncased has the capability to
a single word in as many as 768 different dimensions. BERT is a powerful model
that predicts the next words and gives a score for each sentence based on its
occurrence in the dataset. Each of these models gives the prediction score for
both the sentences. The sentence with the lowest prediction is considered as the
sentence, which is against common sense.

Common Sense Reasoning Block

This is the next phase of the system. This block is responsible for explaining
the incorrect sentence. As discussed in the previous chapter, the system is not
useful until and unless it explains why the sentence does not make sense. Ini-
tially, this phase was developed from scratch. LSTM [6] was used to create a
sequence to sequence encoder-decoder model. Recurrent Neural Network (RNN)
was the heart of this phase. In this approach, we used to generate a sentence using
the present reference sentences. This is different from the extractive approach.
In this approach, we will generate sentences by abstractively summarizing the
references. Original text might not have the generated sentences in them.



Common sense validation and reasoning using Natural Language Processing 7

This approach of abstractive summarization uses Sequence to Sequence Mod-
elling.

Sequence-to-Sequence(Seq2Seq) Modelling:

Seq2Seq modeling can be applied to a wide variety of problems like text classi-
fication, sentimental analysis, machine translation, or text generation. The only
constraint of using this model is that the information must be sequential like a
chain of words, sentences, phrases, etc. Our goal is to create a text summarizer
where the input is a long list of words (in a body of text), and the output is a
short description (which is also a list of words). The approach to solving our is
to use Many-to-Many Seq2Seq models. Encoders and decoders are the building
blocks of the Seq2Seq model. The entire input data is fed to the LSTM’s en-
coder model, and this encoder reads the entire input sequence. At each timestep,
a word or a token from the input sequence is fed to the encoder. The information
is processed at each timestep, and only the contextual information present in the
input sequence is captured. All the other information is discarded. The encoder
step can be illustrated from the below diagram. The process of creating LSTM
Seq2Seq is referred from here[10].

Before sending the input sequence into the decoder, some special tokens
like <start >and <end>are added to each input target sequence. These tokens
indicate the start and end of the target sequence. It is challenging to decode the
target sequence with the test sequence. To avoid this, the prediction of the output
sequence starts by sending a <start>token as the first word to the decoder. The
<end>token indicates that the word is the last in the sequence.

After training process is complete, the model is tested on the new test data
which are new source sequences and are not been used in the training phase.
We need an inference phase which takes care of this. The entire LSTM network
is created, but it may not work for a long sequence of sentences. The LSTM
encoder networks manage to convert the whole sequence of input into a vector
of a fixed length, and prediction of the out sequence is made by the decoder. But
when there is a long sequence, then encoder fails to memorize this sequence and
is not able to convert it into vectors. To solve with have added an ‘Attention
mechanism‘ to it. This attention layer is responsible for giving an importance
level to each word in the sequence. Depending on the importance level, the
encoder network will remember only the essential parts in the input sequence,
which results in the output sequence. There are no such things as attention layer
in Keras. This attention layer is referred from this GitHub repository[12].

GPT-2

The other approach used is the pre-trained GPT-2 model. This model is one
of the most influential models that is used for text summarization and text gen-
eration. The model is trained on an extensive corpus. Additionally, the model
has been further trained on the dataset of this project. This model takes care



8 Shrenik et al.

of the context of the sentences and generates a meaningful sentence using the
reference sentences. This block takes in additional inputs in the form of sen-
tences. At least 2 reference sentences are needed in this step. These reference
sentences are those which users will input and are some reasons about why the
sentence is against common sense. As it is still a prototype, it asks the user to
enter the reference sentences. Once the model is trained strong enough, then it
won’t require any additional reference sentences.

Fine-tuning

As GPT-2 is a pre-trained model, it does not have any knowledge about the
dataset being used in this project. To train the model with this dataset, we have
to train the GPT-2 model again. But, GPT-2 does not allow direct training on
their model. To train the GPT-2 model, fine-tuning has to be performed. To per-
form fine-tuning, gpt-2-simple is used. This is a simple Python package that
wraps existing model fine-tuning and generation scripts for OpenAI’s GPT-2
text generation model[9].

5 Experiments and Evaluation

While training the model, the model was evaluated on many different parame-
ters. Hyper-parameter tuning was performed, and the best possible combinations
were used. When the model was evaluated on the trial data, some basic variations
were performed.

5.1 Evaluation Matrix

The model was evaluated with the pre-processing block and without the pre-
processing block. Table 3 depicts the accuracy achieved for the Common sense
validation phase with and without pre-processing block. We can observe that
the accuracy of the n-gram models (3-gram, 4-gram) and pre-trained BERT is
not that good, but the results are acceptable.

Language Model Without pre-processing With Pre-processing

Trigram 0.50 0.55

Fourgram 0.45 0.51

BERT 0.49 0.49

Table 3: Common sense validation accuracies

Table 4 show the confusion matrix for trigram model where as table 5, shows
the confusion matrix for the fourgram model.



Common sense validation and reasoning using Natural Language Processing 9

Total Samples Actual Positive Actual Negative

Predicted Positive 4106 873

Predicted Negative 3671 1350

Table 4: Trigram model confusion matrix

Total Samples Actual Positive Actual Negative

Predicted Positive 4379 600

Predicted Negative 4327 694

Table 5: Fourgram model confusion matrix

6 Results and Discussions

6.1 Results

BLEU is a score for comparing a candidate translation of the text to one or more
reference translations [3]. Figure 2 shows the generate sentences and the BLEU
score of those sentences. The generated sentences follow the BLEU score.

Fig. 2: Blue score for generated sentences

6.2 Discussion

This paper was focused on one of the most challenging tasks in the field of NLP,
which is Common sense validation and reasoning. There is much research done
and still going on in this field. The proposed system is successfully meeting the
needs of the problem statement and is challenging the evaluation of the baseline



10 Shrenik et al.

model. The system clearly shows how language models can validate any given
sentences. Additionally, it also showcased how the pre-trained models were useful
for the validation task. On the other hand, an attempt was made to create an
RNN model using LSTM to create a deep neural network to handle the task of
common sense reasoning. This part was mainly focused on how NLG can help to
generate reasons to support the validation task. Also, GPT-2 pre-trained model
was to handle the task of reason generation.

7 Conclusion

The models created for validation tasks were not successful in giving better
accuracy than the present pre-trained models. It is observed from the output
that due to less training data and also time constraints, the model wasn’t trained
up to the mark. Though, the models gave accuracies, which are still acceptable,
as this is a very new problem.

8 Acknowledgments

This research was conducted with the financial support of ADAPT Core (Plat-
form Spokes) under Grant Agreement No. 13/RC/2106 and at the ADAPT SFI
Research Centre at Cork Institute Of Technology. The ADAPT SFI Centre for
Digital Media Technology is funded by Science Foundation Ireland through the
SFI Research Centres Programme and is co-funded under the European Regional
Development Fund (ERDF) through Grant 13/RC/2106.



References

[1] Ido D., Bill Dolan, B.M., Danroth: Recognizing textual entailment:
Rational, evaluation and approaches 62, 1–17 (November 2009),
https://tinyurl.com/yc7qlhzr

[2] J. Devlin, M.-W. Chang, K.L., Toutanova, K.: Bert: Pre-training of deep
bidirectional transformers for language understanding (2018)

[3] Jason Brownlee: A gentle introduction to calculating the bleu score for
text in python. https://machinelearningmastery.com/calculate-bleu-score-
for-text-python/ (2019)

[4] Joshi, P.: Ensemble event driven stock market prediction declaration of
authorship (10 2019)

[5] Koehn, P.: Europarl: A parallel corpus for statistical machine transla-
tion (2001), http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-
mtsummit05.pdf, [Online; accessed 11-May-2020]

[6] M. Galetzka, L.S., Weber, C.: Intelligent predictions: an empirical study of
the cortical learning algorithm. University of Applied Sciences Mannheim
(2014)

[7] Martin, D.J..J.H.: Chapter 3. n-gram language models (2019)
[8] McCarthy, J; Minsky, M.S.A.G.L.e.a.: An architecture of diversity for com-

monsense reasoning. IBM Systems Journal; Armonk 41, 530 – 539 (2002)
[9] minimaxir: gpt-2-simple, https://github.com/minimaxir/gpt-2-simple

[10] Pai, A.: Comprehensive guide to text summa-
rization using deep learning in python (2019),
https://www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-
text-summarization-using-deep-learning-python/

[11] Roemmele, Melissa, B.C.G.A.: Choice of plausible alternatives: An evalua-
tion of commonsense causal reasoning. AAAI Spring Symposium - Technical
Report (2011)

[12] thushv89: Keras attention layer (2019), https://tinyurl.com/y6vcjkmz
[13] Wang, C., Liang, S., Zhang, Y., Li, X., Gao, T.: Does it make sense? and

why? a pilot study for sense making and explanation (2019)
[14] Zhang, Liu, L.G.D.V.D.: Record: Bridging the gap between human and

machine commonsense reading comprehension (2018)


